|   [1] 张沅. 家畜育种学[M]. 北京:中国农业出版社, 2001. 
ZHANG Y. Animal breeding[M]. Beijing:China Agriculture Press, 2001.(in Chinese) 
[2] VISSCHER P M, BROWN M A, MCCARTHY M I, et al. Five years of GWAS discovery[J]. Am J Hum Genet, 2012, 90(1):7-24. 
[3] SHARMA A, LEE J S, DANG C G, et al. Stories and challenges of genome wide association studies in livestock-a review[J]. Asian Austral J Anim, 2015, 28(10):1371-1379. 
[4] MANOLIO T A, COLLINS F S, COX N J, et al. Finding the missing heritability of complex diseases[J]. Nature, 2009, 461(7265):747-753. 
[5] GIBSON G. Rare and common variants:twenty arguments[J]. Nat Rev Genet, 2012, 13(2):135-145. 
[6] LI Y L, FENG T, ZHU X. Detecting association with rare variants for common diseases using haplotype-based methods[J]. Stat Interface, 2011, 4(3):273-283. 
[7] LIU D J, PELOSO G M, ZHAN X W, et al. Meta-analysis of gene-level tests for rare variant association[J]. Nat Genet, 2014, 46(2):200-204. 
[8] ROTH E M, MCKENNEY J M, HANOTIN C, et al. Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia[J]. New Engl J Med, 2012, 367(20):1891-1900. 
[9] BAILÉN A R. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol[J]. Rev Clin Esp, 2012, 212(7):408-409. (in Spanish) 
[10] DERING C, HEMMELMANN C, PUGH E, et al. Statistical analysis of rare sequence variants:an overview of collapsing methods[J]. Genet Epidemiol, 2011, 35(S1):S12-S17. 
[11] 梁融, 张俊国, 卜涛, 等. 稀有变异的关联性研究统计方法[J]. 中华流行病学杂志, 2015, 36(8):900-903. 
LIANG R, ZHANG J G, BU T, et al. Review for the testing on rare-variants association with disease[J]. Chinese Journal of Epidemiology, 2015, 36(8):900-903. (in Chinese) 
[12] WU M C, LEE S, CAI T X, et al. Rare-variant association testing for sequencing data with the sequence kernel association test[J]. Am J Hum Genet, 2011, 89(1):82-93. 
[13] DUCHESNE P, DE MICHEAUX P L. Computing the distribution of quadratic forms:Further comparisons between the Liu-Tang-Zhang approximation and exact methods[J]. Comput Stat Data Anal, 2010, 54(4):858-862. 
[14] LEE S, EMOND M J, BAMSHAD M J, et al. Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies[J]. Am J Hum Genet, 2012, 91(2):224-237. 
[15] LEE S, WU M C, LIN X H. Optimal tests for rare variant effects in sequencing association studies[J]. Biostatistics, 2012, 13(4):762-775. 
[16] IONITA-LAZA I, LEE S, MAKAROV V, et al. Sequence kernel association tests for the combined effect of rare and common variants[J]. Am J Hum Genet, 2013, 92(6):841-853. 
[17] HAN F, PAN W. A data-adaptive sum test for disease association with multiple common or rare variants[J]. Hum Hered, 2010, 70(1):42-54. 
[18] LEE S, TESLOVICH T M, BOEHNKE M, et al. General framework for meta-analysis of rare variants in sequencing association studies[J]. Am J Hum Genet, 2013, 93(1):42-53. 
[19] BARNETT I J, LEE S, LIN X H. Detecting rare variant effects using extreme phenotype sampling in sequencing association studies[J]. Genet Epidemiol, 2013, 37(2):142-151. 
[20] WANG X F, LEE S, ZHU X F, et al. GEE-based SNP set association test for continuous and discrete traits in family-based association studies[J]. Genet Epidemiol, 2013, 37(8):778-786. 
[21] CHEN M H, YANG Q. GWAF:an R package for genome-wide association analyses with family data[J]. Bioinformatics, 2010, 26(4):580-581. 
[22] LIN X Y, LEE S, WU M C, et al. Test for rare variants by environment interactions in sequencing association studies[J]. Biometrics, 2016, 72(1):156-164. 
[23] LIN D Y, ZENG D L, TANG Z Z. Quantitative trait analysis in sequencing studies under trait-dependent sampling[J]. Proc Natl Acad Sci U S A, 2013, 110(30):12247-12252. 
[24] ZUK O, SCHAFFNER S F, SAMOCHA K, et al. Searching for missing heritability:Designing rare variant association studies[J]. Proc Natl Acad Sci U S A, 2014, 111(4):E455-E464. 
[25] LANGE L A, HU Y N, ZHANG H, et al. Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol[J]. Am J Hum Genet, 2014, 94(2):233-245. 
[26] EMOND M J, LOUIE T, EMERSON J, et al. Exome sequencing of extreme phenotypes identifies DCTN4 as a modifier of chronic Pseudomonas aeruginosa infection in cystic fibrosis[J]. Nat Genet, 2012, 44(8):886-889. 
[27] FLANNICK J, THORLEIFSSON G, BEER N L, et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes[J]. Nat Genet, 2014, 46(4):357-363. 
[28] ZHOU Y J, WANG Y, CHEN L L. Detecting the common and individual effects of rare variants on quantitative traits by using extreme phenotype sampling[J]. Genes, 2016, 7(1):2. 
[29] YANG J, BENYAMIN B, MCEVOY B P, et al. Common SNPs explain a large proportion of the heritability for human height[J]. Nat Genet, 2010, 42(7):565-569. 
[30] EVANGELOU E, IOANNIDIS J P A. Meta-analysis methods for genome-wide association studies and beyond[J]. Nat Rev Genet, 2013, 14(6):379-389. 
[31] SHUSTER J J. Empirical versus natural weighting in random effects meta-analysis[J]. Stat Med, 2014, 33(7):1260. 
[32] LEE S, ABECASIS G R, BOEHNKE M, et al. Rare-variant association analysis:study designs and statistical tests[J]. Am J Hum Genet, 2014, 95(1):5-23. 
[33] PASANIUC B, PRICE A L. Dissecting the genetics of complex traits using summary association statistics[J]. Nat Rev Genet, 2017, 18(2):117-127. 
[34] FENG S, LIU D J, ZHAN X W, et al. RAREMETAL:fast and powerful meta-analysis for rare variants[J]. Bioinformatics, 2014, 30(19):2828-2829. 
[35] ZHAN X W, HU Y N, LI B S, et al. RVTESTS:an efficient and comprehensive tool for rare variant association analysis using sequence data[J]. Bioinformatics, 2016, 32(9):1423-1426. 
[36] HOWIE B N, DONNELLY P, MARCHINI J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies[J]. PLoS Genet, 2009, 5(6):e1000529. 
[37] HOWIE B, FUCHSBERGER C, STEPHENS M, et al. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing[J]. Nat Genet, 2012, 44(8):955-959. 
[38] BROWNING B L, BROWNING S R. Genotype imputation with millions of reference samples[J]. Am J Hum Genet, 2016, 98(1):116-126. 
[39] ROSHYARA N R, HORN K, KIRSTEN H, et al. Comparing performance of modern genotype imputation methods in different ethnicities[J]. Sci Rep, 2016, 6:34386. 
[40] FRAZER K A, BALLINGER D G, COX D R, et al. A second generation human haplotype map of over 3.1 million SNPs[J]. Nature, 2007, 449(7164):851-861. 
[41] GOLDSTEIN D B, ALLEN A, KEEBLER J, et al. Sequencing studies in human genetics:design and interpretation[J]. Nat Rev Genet, 2013, 14(7):460-470. 
[42] KOSMICKI J A, CHURCHHOUSE C L, RIVAS M A, et al. Discovery of rare variants for complex phenotypes[J]. Hum Genet, 2016, 135(6):625-634. 
[43] DO R, KATHIRESAN S, ABECASIS G R. Exome sequencing and complex disease:practical aspects of rare variant association studies[J]. Hum Mol Genet, 2012, 21(R1):R1-R9. 
[44] SCHAID D J, ROWLAND C M, TINES D E, et al. Score tests for association between traits and haplotypes when linkage phase is ambiguous[J]. Am J Hum Genet, 2002, 70(2):425-434. 
[45] SCHAID D J. Genetic epidemiology and haplotypes[J]. Genet Epidemiol, 2004, 27(4):317-320. 
[46] WANG M, LIN S L. Detecting associations of rare variants with common diseases:collapsing or haplotyping?[J]. Brief Bioinform, 2015, 16(5):759-768. 
[47] LIN W Y, YI N J, ZHI D G, et al. Haplotype-based methods for detecting uncommon causal variants with common SNPS[J]. Genet Epidemiol, 2012, 36(6):572-582. 
[48] LIN W Y, YI N J, LOU X Y, et al. Haplotype kernel association test as a powerful method to identify chromosomal regions harboring uncommon causal variants[J]. Genet Epidemiol, 2013, 37(6):560-570. 
[49] LI J, ZHANG K, YI N. A Bayesian hierarchical model for detecting haplotype-haplotype and haplotype-environment interactions in genetic association studies[J]. Hum Hered, 2011, 71(3):148-160. 
[50] GUO W, LIN S L. Generalized linear modeling with regularization for detecting common disease rare haplotype association[J]. Genet Epidemiol, 2009, 33(4):308-316. 
[51] LI Y, BYRNES A E, LI M Y. To identify associations with rare variants, just WHaIT weighted haplotype and imputation-based tests[J]. Am J Hum Genet, 2010, 87(5):728-735. 
[52] BISWAS S, LIN S L. Logistic Bayesian LASSO for identifying association with rare haplotypes and application to age-related macular degeneration[J]. Biometrics, 2012, 68(2):587-597. 
[53] LIN S. Kullback-Leibler divergence for detection of rare haplotype common disease association[J]. Eur J Hum Genet, 2015, 23(11):1558-1565. 
[54] MADSEN B E, BROWNING S R. A groupwise association test for rare mutations using a weighted sum statistic[J]. PLoS Genet, 2009, 5(e10003842). 
[55] GONZALEZ-RECIO O, DAETWYLER H D, MACLEOD I M, et al. Rare variants in transcript and potential regulatory regions explain a small percentage of the missing heritability of complex traits in cattle[J]. PLoS One, 2015, 10(12):e0143945. 
[56] JIANG D, MCPEEK M S. Robust rare variant association testing for quantitative traits in samples with related individuals[J]. Genet Epidemiol, 2014, 38(1):10-20. 
[57] ZHANG Q Q, GULDBRANDTSEN B, CALUS M P L, et al. Comparison of gene-based rare variant association mapping methods for quantitative traits in a bovine population with complex familial relationships[J]. Genet Sel Evol, 2016, 48(1):60. 
[58] CURTIS D, NORTH B V, SHAM P C. Use of an artificial neural network to detect association between a disease and multiple marker genotypes[J]. Ann Hum Genet, 2001, 65(1):95-107. 
[59] MOTSINGER-REIF A A, DUDEK S M, HAHN L W, et al. Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology[J]. Genet Epidemiol, 2008, 32(4):325-340. 
[60] KARATZOGLOU A, SMOLA A, HORNIK K, et al. Kernlab-An S4 package for kernel methods in R[J]. J Stat Softw, 2004, 11(9), doi:10.18637/jss.v011.i09. 
[61] XU S Z, XU Y, GONG L, et al. Metabolomic prediction of yield in hybrid rice[J]. Plant J, 2016, 88(2):219-227. 
[62] BREIMAN L. Random forests[J]. Mach Learn, 2001, 45(1):5-32. 
[63] ACHARJEE A, KLOOSTERMAN B, DE VOS R C H, et al. Data integration and network reconstruction with-omics data using Random Forest regression in potato[J]. Anal Chim Acta, 2011, 705(1-2):56-63.  |